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ABSTRACT
The lack of interpretability in the field of medical image analysis has significant ethical and legal implications.
Existing interpretable methods in this domain encounter several challenges, including dependency on specific
models, difficulties in understanding and visualization, as well as issues related to efficiency. To address these
limitations, we propose a novel framework called Med-MICN (Medical Multi-dimensional Interpretable Concept
Network). Med-MICN provides interpretability alignment for various angles, including neural symbolic reasoning,
concept semantics, and saliency maps, which are superior to current interpretable methods. Its advantages include
high prediction accuracy, interpretability across multiple dimensions, and automation through an end-to-end concept
labeling process that reduces the need for extensive human training effort when working with new datasets. To
demonstrate the effectiveness and interpretability of Med-MICN, we apply it to four benchmark datasets and
compare it with baselines. The results clearly demonstrate the superior performance and interpretability of our
Med-MICN.

Figure 1: Med-MICN demonstrates multidimensional interpretability, encompassing concept score prediction, concept reasoning
rules, and saliency maps, achieving alignment within the interpretative framework. The ’Peripheral ground-glass opacities’ is c0,
and along the y-axis, it sequentially becomes c1, . . . , c7.

ANNOTATION MODULE FRAMEWORK

Figure 2: (a) module, output rich dimensional interpretable conceptual information for the specified disease through the
multimodal model and convert the conceptual information into text vectors through the text embedding module; (b) module,
access the image to the image embedder to get the image features, and then match with the conceptual textual information to get
the relevant attention region. Then, we get the influence score of the relevant region information through pooling, and finally
send it to the filter to sieve out the concept information with weak relevance to get the disease concept of image information.

PIPELINE

Figure 3: Overview of the Med-MICN Framework. The Med-MICN framework consists of four primary modules: (1) Feature
Extraction Module: In the initial step, image features are extracted using a backbone network to obtain pixel-level features.
(2) Concept Embedding Module: The extracted features are fed into the concept embedding module. This module outputs
concept embeddings while passing through a category classification linkage layer to obtain predicted category information.
(3) Concept Semantic Alignment: Concurrently, a Vision-Language Model (VLM) is used to annotate the image features,
generating concept category annotations aligned with the predicted categories. (4) Neural Symbolic Layer: After obtaining the
concept embeddings, they are input into the Neural Symbolic layer to derive conceptual rules. Finally, the concept embeddings
obtained from module (2) are concatenated with the original image embeddings and fed into the final category prediction layer to
produce the ultimate prediction results.

STABILITY EVALUATION
Method Backbone Acc.(%) Precision(%) Recall(%) F1(%) AUC.(%) Interpretability

Baseline

ResNet50 81.36 82.28 81.44 81.67 81.85 ×
VGG19 79.60 81.82 78.93 79.88 80.26 ×
DenseNet169 85.59 85.60 85.60 85.59 85.60 ×
SSSD-COVID 81.76 81.82 78.26 80.00 88.21 ×
Label Free CBM 69.49 68.62 69.82 69.21 64.84 ✓
DCR 55.93 58.38 55.43 51.41 55.43 ✓

Ours
ResNet50 84.75 84.77 84.88 84.75 84.77 ✓
VGG19 83.05 86.74 82.93 84.37 84.26 ✓
DenseNet169 86.44 87.27 86.41 87.15 87.92 ✓

Method Backbone Acc.(%) Precision(%) Recall(%) F1(%) AUC.(%) Interpretability

Baseline

ResNet50 77.27 72.37 73.19 72.77 72.51 ×
VGG19 76.52 72.92 68.54 70.12 68.80 ×
DenseNet169 78.03 74.37 67.41 69.51 68.76 ×
Label Free CBM 70.34 68.62 69.82 69.21 69.49 ✓
DCR 76.52 71.79 63.88 65.32 63.88 ✓

Ours
ResNet50 81.82 76.56 76.17 76.33 76.12 ✓
VGG19 82.58 81.59 76.05 78.07 75.63 ✓
DenseNet169 79.55 77.68 67.64 69.79 67.64 ✓

Method Backbone Acc.(%) Precision(%) Recall(%) F1(%) AUC.(%) Interpretability

Baseline

ResNet50 75.64 75.01 70.77 71.72 70.88 ×
VGG19 81.41 88.56 75.51 77.56 75.94 ×
DenseNet169 69.55 70.37 62.05 61.66 62.12 ×
Label Free CBM 71.21 71.89 71.45 70.84 74.12 ✓
DCR 62.02 66.25 51.50 41.33 50.56 ✓

Ours
ResNet50 78.37 80.38 73.12 74.42 73.12 ✓
VGG19 88.30 92.59 85.43 88.16 87.09 ✓
DenseNet169 73.88 81.24 65.85 65.70 66.28 ✓

Method Backbone Acc.(%) Precision(%) Recall(%) F1(%) AUC.(%) Interpretability

Baseline

ResNet50 80.79 80.81 80.81 80.79 80.81 ×
VGG19 75.37 75.40 75.34 75.37 75.39 ×
DenseNet169 76.85 77.05 76.91 76.83 76.91 ×
Label Free CBM 75.24 75.15 74.92 75.41 75.02 ✓
DCR 68.05 67.55 65.33 66.12 67.01 ✓

Ours
ResNet50 82.76 82.84 83.23 83.03 82.99 ✓
VGG19 77.34 77.72 77.33 77.53 77.58 ✓
DenseNet169 80.79 82.12 80.89 81.11 81.38 ✓

ABLATION STUDY
Dataset Ablation Setting Metrics

Lc Lneural ACC.(%) Precision(%) Recall(%) F1(%) AUC.(%) Interpretability

COVID-CT

82.20 82.92 82.21 82.55 82.64
✓ 83.05 83.62 83.16 83.01 83.16

✓ 81.36 82.11 81.38 81.70 81.81
✓ ✓ 84.75 84.77 84.88 84.75 84.77 ✓

DDI

78.03 74.97 66.88 69.24 67.41
✓ 79.55 75.36 71.47 72.73 71.20

✓ 78.79 76.38 66.29 68.69 67.64
✓ ✓ 81.82 76.56 76.17 76.33 76.12 ✓

Chest X-Ray

68.59 69.63 61.11 61.02 62.05
✓ 72.28 77.63 64.15 63.72 64.15

✓ 70.03 73.83 61.84 61.25 62.39
✓ ✓ 78.37 80.38 73.12 74.42 73.12 ✓

Fitzpatrick17k

78.33 79.50 78.32 78.91 79.06
✓ 79.80 80.60 79.81 80.20 80.31

✓ 80.79 81.28 80.82 81.28 81.07
✓ ✓ 82.76 82.84 83.23 83.03 82.99 ✓

Table 1: Experimental results from ablation studies on each
loss function demonstrate that each loss function is indispens-
able for both accuracy and interpretability.
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